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Abstract

This document is an essay in the translation of “Zur Theorie der Radiome-
terkafte” by Albert Einstein. The original document was found in: in Ger-
man. Rather than adding notes with corrections, the corrections have been
made and original versions put into notes. This makes a less confusing ar-
gument in the opinion of the author The translation is direct, except where
notes and corrections have been incorporated into the text.
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On the basis of schematic assumptions about the mechanism of molecular
evolution in gases, the forces are approximated which act on the mean free
path A of small bodies and on the boundary zone against A large bodies in
a warm flow. The theory of force effects and pressure differences in gases
caused by temperature differences has been clarified by Knudsen in the case
that the free path is large compared to the decisive vessel dimensions. On
the other hand, there is still a great deal of uncertainty about the causes
of the thermo-forces in traps, where the free path is of the same order of
magnitude or smaller than the decisive framing dimesions. In the following
I will give a more qualitative consideration of the circumstances prevailing
here, taking into account the quantitative only of the order of magnitude. If
the considerations given here are also quite elementary in nature, then they
have helped me out with uncertainties, and I hope that some readers will be
detained with this brief exposition.

1. On the path of small bodies in a heat gradient

At first we think of an extended gas, in which the positive z-axis is pro-
gressively formed by a stationary homogeneous heat-current. Molecular mo-
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tion is largely schematized, ascribing the same velocity to all particles, wu,
except for the small differences that we consider to be a schematic account of
the thermal flow. Against the path of small bodies in a gradient of heat. At
first we think of an extended gas, in which the positive z-axis is progressively
formed by a stationary homogeneous heat-current. Furthermore, if we calcu-
late as that the molecules move only slowly along the coordinate axes. We
can treat the path length A\ as a constant length. All these approximations
only bring us insignificant errors in the numerical coefficients in the formulas,
without disturbing the conception of the essential relationships. We first con-
sider the molecular motion through a surface element of ¢ perpendicular to
the z-axis, against X\. Mass flow should be zero, therefore, exactly the same
number of molecules pass through o per second in both directions, namely:

1

nou (1)
Molecules, where n denotes the number of molecules per unit volume. In or-
der to do justice to the fact of the warm flow, we must assume that the veloc-
ity of the molecules u in the direction of the positive z-axis is slightly larger
than u; the correspondingly defined u_ must be correspondingly slightly
smaller than u. The heat flow o f through the surface element is given by:

1
of = ghou (%u 42 —%u —2 ) (2)

Considering Equation 2 in the context of:

1 3
—mu? = Z2T
2 2

as well as the fact that for the molecular velocity uy or u_ temperatures
are relevant at the places where the last collision took place (A = mean free

path), then instead of 2:

n oT
f= —§x)\ug (2a)

Now consider instead the surface element a small body of the surface
extension 0. The molecules colliding with it in the z-direction give an impulse
overflow, K in the direction of the positive z-direction:

1
K = gnau(mu+ —mu._) (3)



If one neglects the fact that on exiting the body by the colliding molecules
another impulse effect on the body arises, which constitutes a certain fraction
of the just calculated, K is also the moving force acting on the body. It follows
from 2 and 3 that u, and u_ deviate only slightly from u:

——p=—0 (3a)

Where p is the gas pressure. In this formula, as in 2, f refers only to
the part of the warm flow that is based on the translational motion of the
molecules.

This force, K, will move a particle in the direction of the positive z-axis
when it is free. In order to know the velocity, v, of this motion, we need
only calculate the frictional force K', which is exerted by the gas on the
particle when it is moved by the gas at the velocity v. This frictional force
arises essentially from the fact that the body communicates on average to
each colliding molecule the impuls mv. By execution of the corresponding
elementary bill one receives:

/ 4
K = —3nou.my (4)

The equation of K and —K " yields:
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These velocities, which, as long as the particles are small in size, are
independent of the particle size, can become quite considerable.

If A\ =0.1cm and g—i =30, T" = 300 and H, gas then the results obtained
about 1m per second, at atmospheric pressure and otherwise equal ratios
over 0.1mm per second.

These forces play a crucial role, for example in the deposition of the frost
and in electric heaters used to purify the air of smoke particles.

2. In the case of a small hole in a thin wall transverse to the heat
flow

We come now to a phenomenon which is the counterpart to the one we
have just considered. The reasoning of Section 1 was based mainly on the



fact that inside a flow-free gas the number of molecules meeting a surface
element from both sides is equal. We come now to a phenomenon which is
the counterpart to the one we have just considered. The reasoning of §1 was
based mainly on the fact that inside a flow-free gas the number of molecules
meeting a surface element from both sides is equal. We put it this way: the
condition of flow equality is fulfilled in the interior of the heat-permeated
gas. The calculated force exerted on a particle resulted from the fact that
the same number of molecules on the front and back of the particle carry
different momentum.

This “flow equality” in the gas interior now faces a “pressure equator”
with respect to the walls of the gas space. Namely, it is well known and
easy to show that everywhere on the walls of the gas space even with uneven
temperature distribution in the gases, equal compressive forces per unit area
must act, if only the considered wall parts are sufficiently large compared to
the free path. Which is taken by itself to be sufficiently uniformly tempered
and by Gasqerschnitte are separated from each other, which are large in all
dimensions against the free path. Then the concepts and laws of hydrostatics
of the continuums are applicable.

This “flow equality” in the gas interior now faces a “pressure equator”
with respect to the walls of the gas space. Namely, it is well known and
easy to show that everywhere on the walls of the gas space even with uneven
temperature distribution in the gases, that equal compressive forces per unit
area must act. If the considered wall parts are sufficiently large compared to
the free path taken by itself, and sufficiently uniformly tempered by gas cross
sections are separated. The walls must be large in all dimensions compared to
the free path. Then the concepts and laws of hydrostatics of the continuums
are applicable

In the gas considered above, there is a flat plate oriented perpendicular
to the heat flow, i.e. parallel to the y-z plane. Let it be large compared to
the free path length, and its edges should have reasonable distance from the
remaining walls of the gas space, which are large compared to A. Also, there
is pressure equality despite the presence of the heat flow.

Any molecule that hits the plate from the side of the negative x may have
the velocity u,, and leave the plate in the negative z-direction at the velocity
u. v, of such impacts may occur per unit area and time. w,, v and v, are
the corresponding values for the other side of the plate. It is assumed here
that the velocities of the molecules leaving on both sides of the plate after



the collision are the same. The condition of pressure equality is then:

% = V(U + up) = vp(u + up) (6)

Further, the heat flow on both sides of the plate must be the same, which is
expressed by the equation.

2 ) = vy — ) @

By dividing these two equations one obtains first:

A

, Up — U =U— Uy (8)

Substituting this in Eqn. 6, one gets by replacing @ by v and replacing
this with 7

Up — Up = = —— (9)

If there is an opening in the plate that is small in relation to the free path
o, then (v, — v,,)0 molecules must pass in the direction of the decreasing x
per unit time more than in the opposite direction v, — v,, .e. the intensity
of an opening (recurrent) molecular flow, the apparent flow velocity of which
is given by the equation

Vp — Uy = —NV (10)

from 9 and 10 follows:
v=—-L (10a)

Eqn. (10a) forms the counterpart to equation (5)

3. Cause of certain radiometer forces in denser gases

These results are essentially still in the area of the laws of Knudsen gas,
in which the effective body dimensions are small compared to the free path in
the gas. However, they also provide the key to certain radiometer detections
in denser gases.

A sheet whose measurements are large compared to the free path length
A, lies in the interior of the gas, perpendicular to a heat flow. Similarly, the
distances of the vessel walls from the edges of the sheet are large compared



to A. Sufficiently far from the edge of the sheet, the pressure balance will
then prevail on the sheet, but far enough outside the leaflet the conditions
studied in §1 will prevail which will cause a small body to experience the
compressive force %f against \.

At the edge of the sheet a gradual transition will take place between these
two states of the gas whose width is of the order of magnitude A. It is thus
on the unit length of the plate edge a force of the order of magnitude:
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(1)
as long as the dimensions of the leaflet are large against the free path.

The case of the sheet warmed on one side is similar in that here too a
marginal zone of the indicated width A, will be present in which the pressure
equality on both leaflet sides is not fulfilled. In this case, which is less suitable
for a quantitative examination, I find the expression for the force acting on
the unit of length of the edge

K = —p) T (11a)
Which, of course, is probably only valid for the order of magnitude.
Another cause of radiometer forces is the rate of sliding a wall gives to
gases at tangential temperature gradients. This phenomenon, which has
already been opened up by Maxwell in a theatrical way and was found by
Knudsen independently, is currently being worked on by Messrs. Hettener
and Czerni.

3. (Alternative Ending) - Wall with Temperature Jump

In the event that a termpeature difference of the two wall surfaces is
maintained by irradiation or otherwise, we obtain analogous effects, even if
no heat flow in the gas is taken into account. Again, we reiterated the case
that the communication of the guest parts on either side of the wall is such
that pressure equalization occurs almost completely. This corresponds to the
equation

p
= =20,y = 2 12
- Ul Vply (12)
becomes:
Av=uv,—v, U:§(Up+1)n)



so as to get:

Av AT
— =0 (11a)
—Av =nv
1
v = gnu

If there is a small opening ¢ in the wall, then Av denotes the intensity of the
molecular flow through the opening. With regard to the relation:

—Av =nv

From this you get:
1 AT

= —U—
12 T

which relation in this case takes the place of (10a). To make the comparison

easier to understand, we note that (10a) can be also written in the From:

v (11b)

1 AL
v = —Eu% (9b)

4. Principles of the previous sections

If a gas is in thermodynamic equilibrium, the three conditions are fulfilled
at each location in each direction.

a) vy = v_ (flows balance)

b) muivy = mu_v_(forces balance)

¢) smuivy = tmu?v_ (heat flow balances)

If a heat flow takes place, then c) is must be replaced by:
¢) f=im(uivy) —ulv

If f#0, i.e if there is a heat flow, then a) and b) can not be fulfilled at the
same time. There is no flow in the free gases, so a) is fulfilled. In place of b)
we must use:



b") i = muivy —mu_v_ = 5

So connected to the heat flow, a pulse current ¢, which manifests itself as
a force A\ against relatively small particles, that enter this the temperature
gradient.

If we consider that there is a large sheet A, which is placed with its surface
perpendicular to the heat flow, so takes place at pressure equilibrium. It is
possible approximately, though not exactly, that b) is satisfied. But a) is not
fulfilled, since a), b), ¢ ’) are incompatible with each other. One finds rather

a) vy —v. = -5 = —

Wi
£l

which matches except for the number factor with (9).



